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The change o[ volume in a rubber cylinder subjected to combined axial 
extension and torsion is calculated. The result enables the [ormula [or the 
couple, previously derived [or an incompressible rubber, to be corrected [or 
the effects o[ finite compressibility; [or typical rubbers this correction is [ound 
to be negligible. 

By thermodynamic analysis the temperature coefficient o[ the applied couple, 
under constant volume and constant pressure conditions, is derived. The 
difference between these two coefficients is related to the change of volume 

accompanying torsion at constant pressure. 

THE thermodynamic analysis of the stress/.temperature relations for rubber 
has in the past been almost exclusively concerned with simple extension. 
For this type of strain the accompanying volume changes give rise to an 
internal energy contribution to the stress which is relatively most impor- 
tant at low strains, where it leads to the phenomenon of the 'thermo- 
elastia inversion', i.e. the reversal of the slope of the stress/temperature 
curves at about eight per cent extension. As early as 1935, however, 
Meyer and Ferri 1 noted the effect of the thermal expansion of the material 
on its stress/temperature relations, and the absence of the inversion effect 
in uniaxial compression. Later, Meyer and van der Wyk ~ investigated 
the temperature dependence of shear stress in a coaxial-cylinder device, 
where volume change effects were expected to be non-existent, though, 
as pointed out by Flory, Ciferri and Hoeve 6, this assumption is not strictly 
justified. 

A type of strain which is closely related to simple shear is the torsion 
of a cylindrical rod. This type of strain has many experimental advan- 
tages; it is easy to produce, and the measurement of the torsional strain 
can be carried out with a relatively high degree of accuracy. 

The purpose of the present paper is to examine the theoretical depend- 
ence of the torsional couple on temperature for a cylindrical rod which, 
for the sake of generality, will be considered to be subjected to combined 
axial extension and torsion about the axis. The analysis is based on the 
Gaussian network theory, and makes use of the relations between the 
changes of volume and the principal stresses derived in the preceding 
paper s . 

In contrast to the case of simple extension, the problem of torsion in- 
volves an inhomogeneous state of strain, and is therefore rather more 
complicated. The following method of approach is adopted. First, the 
stress distribution is derived for the case of an incompressible rubber sub- 
jetted to the specified strain. It is then assumed, initially, that this same 
stress distribution is applicable to a slightly compressible rubber; this 
enables the volume change at any point to be calculated. From this cal- 
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culated change in volume a correction to the initially assumed stress 
distribution is derived; this correction is found to be negligible. The 
resultant couple required to produce the torsion is thus approximately 
equal to that for an incompressible rubber. 

From this result the stress/temperature relations are readily derived. 

S T R E S S  D I S T R I B U T I O N  I N  C Y L I N D E R  S U B J E C T E D  

T O  E X T E N S I O N  A N D  T O R S I O N  

The problem of the combined extension and torsion of a cylinder, for an 
incompressible rubber, has been dealt with by Rivlin ~ using the most 
general type of stored-energy function. In this section the problem is 
worked out for the particular case of a stored-energy function derived 
from the statistical theory of the Gaussian networkS; this is a special 
case of the more general solution given by Rivlin. 

We consider a cylinder of unstrained radius a0 subjected to an axial 
extension in the ratio /33, and a torsion about the axis of amount tk, 
measured in radians per unit strained axial length. In the transverse plane, 
normal to the cylinder axis the subscripts 1 and 2 will be used for the 
circumferential and radial directions, respectively; the circumferential and 
radial normal components of stress at any point are thus tn and tn. The 
element of the material at any radial position r is in a state of strain 
corresponding to a pure homogeneous strain together with a simple shear. 
The derivation of the stress components for such a state of strain is given 
in the Appendix. From this we obtain, for the radial stress component. 

t22 = - p+ + (G' / V) t~ (1) 

where /3~ is the radial extension ratio (/32< 1)referred to the unstrained 
dimensions, p* has been defined s, and 

G" = v k r  (r~/~) (2) 

~, being the number of chains in the volume V under consideration. The 
quantity f,/~0 is the ratio of the mean-square end-to-end chain length in 
the network to that for the uncrosslinked molecules. The quantity G ' / V  
is equivalent to the modulus in simple shear. The shear strain y at the 
radial position r is 

~, = q,r (3) 

The difference of radial and circumferential normal stress components is 
(see Appendix)t 

• 2 2 tn - t22 = (G / V) (/31-/32 + ~ ~b~r 2) (4) 

For the equilibrium of stresses in the transverse plane it is easily shown 
that 4 

dt~2 / dr = (tlx - tz~) / r (5) 

TThe symbols B,, B2, Be are used to distinguish these extension ratios from the princilxal ex,tension 
ratios (axes of  strain ellipsoid), which are denoted by X1, 2% and ~.~ in ref. 3. 
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The above equations are applicable to both a compressible and an in- 
compressible rubber (except that for an incompressible rubber, p* in 
equation (1) is replaced by the arbitrary constant p). For an incompress- 
ible rubber we have 

V = V. ;  fl~ = ~ = fl;~; r = rofl~/2 (6) 

where V, is the unstrained volume and r0 the unstrained radial position. 
Insertion of these relations into equation (5) gives 

dt2--2 = (G' / V.) fi20Zr (7) 
dr 

This is the differential equation which determines the radial distribution 
of stress. Integration, subject to the boundary condition that t~2=0 at the 
surface (r=aoflT~l/2), yields the result 

t22 = - (G" /EV~)tp2fla ( ~  - ~)  (8) 

which is equivalent to the expression given by Gent and Rivlin 5. 
Equation (8) represents a normal pressure (t2~ negative) in the radial 

direction, which is a maximum at the axis and decreases parabolically 
with increasing r. It i,s proportional to the square of the torsion. 

The couple M about the axis is derived from the tangential stress com- 
ponent t~3 on the transverse section. [Appendix, equation 73(a)]. With (3) 
this becomes 

t,3 = (G" I V~) fl3t~r / fllfl2 (9) 

The tangential force acting on an annulus of thickness dr being tla 
(21rr dr), the contribution dM of the annulus to the total couple about the 
axis is 

d M  = 2¢r (G" / V~X~bfl3r 3 / fllfl~)dr (1 O) 

For an incompressible rubber the relations (6) apply, and d r = f l [  ~/~ dro. 
Equation (10) then becomes 

d M  = 2zr~b ( G" / V~)? ° dr0 (11) 

giving the total couple 
a n 

M = ] d M =  ½7r~b (G' / V . )~  (12) 
0 

which is independent of the axial extension fi3. 

V O L U M E  C H A N G E  F O R  C O M P R E S S I B L E  R U B B E R  

Since fl~ is a principal axis of the strain ellipsoid and t~2 a principal stress, 
the volume-change relations previously derived 3 are applicable, i.e. 

t ~ 2 = ( V -  V , ) / K V  + ( G ' / V )  ( ~ -  1) (13) 

Putting ( V - V , ) = S V  and inserting the expression (8) for t22, the volume 
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change for a cylindrical shell of volume V at the radial position r is 
therefore given by 

8V G" G" 
KV" = - ~ q:/3~ (~ - r~ - --V--" (~- I) (14) 

To the degree of approximation with which we are concerned we may 
put V= V. and/3~--/3~ I. Equation (14) may then be written 

8V=KG" [- ½ qJ/3s (~ -r~ + (1 - I//38) ] (14a) 

To obtain the total volume change it is necessary to integrate (14a) with 
respect to ro. It must be noted, however, that G', being proportional to 
the volume of the cylindrical shell, is a function of !"0. We therefore write, 
for a cylinder of unit unstrained length, 

G" = ((7." / V.)  V .  = (G" / V.) 27fro dro (15) 

where G ' / V .  (the modulus) is now a constant. Inserting this expression 
into equation (14a), the total volume change is given by 

KG" % 
AV= V. ! [-½qJ~/33(a~0-r~ + (1-1]~s)]2~rrodro (16) 

On integration this yields 

AV=qr~  KG" [ (1 - 1 / 8 3 )  - ¼~13~'ao~] (17) 

In this expression 1r~ is the volume of the unstrained cylinder. If this 
is now represented by V., equation (17) becomes 

(AV/V.) = (KG'/V.) [ (1 - liE,) - ¼/33q~'a~ (18) 

Equation (18) represents the relative volume change for the whole cylinder. 
We shall also require the volume change for the material comprised within 
an initial radius ro. This is 

[AV]~. ----KG" ~o V~ ! [ - ½ ~ B '  (~ - r~ + (1 - 1/133) ] 21fro dr, 

o r  

AV] "o KG" 
o = V, [ ( I - I / t 3 ) - ¼ q ~ f l 3 ( 2 ~ - r ~ ]  (19) 

where V, now refers to the original volume within the radius r0. 
It is seen that expression (18) for the change of volume for a cylinder 

subjected to combined extension and torsion is made up of two terms. 
The first term represents an increase of volume due to the extension; 
this has the form already derived s. The second term, representing the 
additional effect of the torsion, corresponds to a reduction of volume, 
and is proportional to the square of the torsion. This second term is 
directly related to the radial stress component t2,, which, as we have 
already seen, is compressive and also proportional to the square of the 
torsion. 
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It may be noted in passing that, for a particular relation between the 
extension and torsion, the volume change is zero. The appropriate con- 
dition, obtained by equating the RHS of equation (18) to zero, is that 

/33= 1 + (1 - ~b~a~0)~/'/½~ (20) 

which has a real solution only if ~0~]> 1. 

E F F E C T  O F  V O L U M E  C H A N G E  O l q  C O U P L E  

To obtain the effect of the volume change on the applied couple M, it is 
necessary first to derive the change in the state of strain at the radial 
position r. From this the change in the stress component t= is obtained. 
Integration then gives the effect on the total couple. 

It is assumed throughout that the axial extension ratio /33 is constant. 
The circumferential and radial extension ratios fl~ and f12 are given by 

fll= r / ro, fl2=dr / dro (21) 

If fl~o refers to the incompressible rubber, then 

fllo= fl[~/2 (22) 

and is independent of radial position. For a compressible rubber the 
change 8fix in fix due to the compressibility is obtained from the change 
in volume AV for the material within the radius r0, as given by equation 
(19). Since V=cr f l~  

a~,/#,0 = 8r _ ½ [AVI V.] '., (23) 
r0 

The change in f12 is not required for the present analysis. Its value may 
readily be obtained, if required, from the relation (for constant fls) 

a v / v . =  ~I~,1131o+ ~/~,/./3~0 (24) 
where 8V/V, ,  is the local volume change, given by equation (14a). 

The contribution of a cylindrical shell to the total couple, represented 
by equation (10), when expressed in terms of the original radius r0 through 
equations (21), becbmes 

d M =  2¢r~b (G" / V,) f l , ~  dro (25) 
Writing 

= if,0(1 + 28fll/fllo)= fl[~ (1 + 28fll/fllo) (26) 

[from equation (22)], the total couple is thus given by 

a n 

M = 2vr~b (G' /V. )~  (1 + 28~/fllo) ~ dro (27) 

This can be written in the form 

M = Mo + aM (27a) 
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where M0 is the couple for the incompressible rubber, given by equation 
(12), and 

% 

8M = 2~rq, (C'/V.)  S 2 (~B~//31,) ~ dro (28) 
o 

The relative change in M due to the compressibility is 8M/Mo. Using the 
expression (10) for M0 this becomes 

8M 4 a° 
= ~ ~ 2 (8,8,//3,o) ~o dr0 (29) 

M--~" 

On insertion of expression (23). together with (19). for 8fll//31o. we thus 
obtain 

4 8M KG' a 0 

! [(1-1//3a)-¼~b~/3s ( 2 ~ - ~ ) ] ~ d r 0  (30) 
M--;- = a'0 

which yields 

8M / Mc = (KG" / V,) '[ (1 - 1//33)- ~/33qJ~ (31) 

This equation represents the effect of the compressibility on the mag- 
nitude of the couple, for given values of the unstrained radius a0, and of 
the strain parameters fla and ~b. It is seen that this expression has a form 
comparable to that for the volume change itself [equation (18)], being 
composed of two terms, one related to the extension and the other to 
the torsion. 

M A G N I T U D E  O F  V O L U M E - C H A N G E  E F F E C T S  

The value of the compressibility coefficient K for rubber is approximately 
5x 10 -~ cm~kg -' while a typical value for G'/V~ (shear modulus) is 
4 kgcm -~. Hence G'/Vu is of the order 10 -4. In a torsional experiment 
the maximum value of ~ba0 is likely to be of the order unity. Thus from 
equation (18) it is seen that the maximum value of the relative volume 
change in torsion is of the same order (though of opposite sign) to that 
for simple extension, i.e. of the order 10 -~. In combined extension and 
torsion the volume change can range from zero to this same maximum, 
depending on the relative amounts of extension and torsion. 

The relative change in couple due to this change of volume [equation 
(31) ] is of the same order as the volume change itself, i.e. ca. 10 -~. (A 
similar relationship applies to all the components of stress.) The correc- 
tion to the value of the couple when the volume change is taken into 
account is therefore negligible. 

S T R E S S / T E M P E R A T U R E  R E L A T I O N S  

In this section the temperature coefficients of the torsional couple at 
constant pressure and at constant volume are considered. The derivation 
is formally similar to that of Flory, Ciferri and Hoeve 6 for simple exten- 
sion. 
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In deriving these temperature coefficients the correction to the couple 
due to compressibility, represented by equation (31), will be ignored. This 
is justified by the negligible value of this correction, and by the fact 
that so long as K is no more strongly dependent on temperature than is 
G" (which seems entirely reasonable) the relative temperature Variation of 
8 M / M o  will be of the same order as mat of M0 itself, and will therefore 
be equally negligible. This means that we use the relation (12), which is 
strictly valid only for an incompressible rubber, to represent the couple 
in the case of the compressible rubber also. Insertion of expression (2) 
for G" in (12) gives 

M = ½zrqJ ( v k T / V u )  (~/rZo) a~ (32) 

Constant  pressure 
It is required to differentiate equation (32) at constant pressure p, 

length l and torsioi~ ~. In this expression, V, (unstrained volume), a0 (un- 
strained radius), ~and  ~are  functions of temperature. Writing 

(1 / V~) O V ~ / O T = O  in V ~ / O T = f l  (33a) 

where fl is the volume expansion coefficient of the unstrained rubber, we 
have 

0 In V . - 1 / O T  = - fl (33b) 

and 0 In #0 / 0T = 4/3 / 3 (33c) 

Also, since "~, the mean-square chain end-to-end distance in the unstrained 
state, is proportional to l~/S 

d In ~/dT = 2 f l /3  (34) 

Remembering that if f ( x ) = u . v . w  . . . . . .  where u,.v, w . . . . .  are functions of 
X, then 

[ O_~xf (x)] O l n v  O l n w  
~ - 0----~-- + 0-----7- + . . . .  (35)  

the differential of equation (32) is seen to be 

or  

0 In(M/T).] 
0T J p.l.* 

0 in (m110.] 
OT J p,~., 

This may be written 

= _fl+ 2/3 d l n ~  + 4__tiff 
3 dT 3 

7 d In 
= f l_ "0 (36) 

dT 

= -  1 + 1 9  T 
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Constant volume 
Strictly, the expression for the couple should be differentiated at con- 

stant final volume V~ -AV, where AV is given by equation (18). However, by 
the same arguments which were used to justify ignoring 8M, we may 
justifiably ignore AV in deriving the temperature coefficient of M, since the 
change AV makes a negligible difference to M. Differentiation at constant V 
(i.e. II.) then gives 

[.OIn(M/T)] = -  dln~° (37) 
OT v,z,~ d----T-- 

o r  

• r,z.,- T I - T  (37a) 
dT 

Difference between temperature coe~tcients 
The difference between the temperature coefficients at constant pressure 

and at constant volume respectively, is 

lOIn(M/T) [Oln(M/T)] OT ] ~.,.~ -~ -j ~.,.,=~ (38) 

Comparison with Flory 
The result represented by equation (37) is a special case of the general 

result enunciated by Flory 7, that for any type of distortion the logarithmic 
temperature coefficient of the stress is equal to - d  In ~/dT. Further- 
more, the fact that the temperature coefficients at constant pressure and 
at constant volume are not equal substantiates and amplifies the con- 
clusion arrived at by Flory, Ciferri and Hoeve 6 on general grounds, namely 
that the apparent absence of a volume change in torsion, as indicated 
by the classical theory of elasticity for small strains, does not justify the 
assumption that for this type of strain the stress/temperature coefficients 
at constant pressure and at constant volume are identical. 

R E L A T I O N  O F  I N T E R N A L  E N E R G Y  T O  C H A N G E  

O F  V O L U M E  

For simple extension the internal energy contribution f, to the stress, 
at constant volume, is obtained from the relation, 

(o8  ol 
f=\Ol ]r.r +T (-~f) e.=f,+T(-~-f)e, (39) 

The analysis of Flory. Ciferri and Hoeve 6 then yields 

f~/f= - T[O In (f/T)/O T]r z-- T d In To/dT (39a) 

The same type of analysis is applicable to torsion, on substituting M 
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for f and 4~, the angular rotation, for l. Let us denote by M,v the internal 
energy contribution to the couple at constant volume. Then 

and 
Me~/M= -T[O In (M/T) /OT]v,,,~= T d In r~/dT (41) 

A similar analysis gives the change in heat content in a constant pressure 
experiment. Neglecting the contribution p dV (where p denotes atmo- 
spheric pressure) it is essentially the internal energy contribution to the 
stress at constant pressure. Denoting this by Me~, 

M e p / M = - T  '[0 ln(M/T)/OT]p,~,~=T[d l n ~ / d T - f l ]  (42) 

The difference between the internal energy contributions to the stress at 
constant pressure and at constant volume, respectively, is thus 

M,~ - M . . . . .  MflT (43) 

It will now be shown that this difference is exactly equal to the change 
in internal energy associated with the change of volume due to the torsion. 
From equation (18) the total change of volume (on stretching and twisting) 
is 

AV =KG" [ (1 - 1/f13)- ¼flsq~2~] (44) 

The change of volume per unit increase of torsion is thus 

(dV/d  ~b)r.,,~ = -½KG" f13 d /4  (45) 

The internal energy change associated with a change of volume dV in a 
liquid, as quoted by Gee 8, is t  

(dE / dV)r = flT / K (46) 
Hence 

. . . .  ½/3 G flAb 4 (47) 
T,~,l T,V,I -'~ T T,p,l 

Combining equations (.47) and (12) 

- -  = - M f l r  (48) 

But V,,=zr~l/fl3, and therefore 

OE" 
(~--~)r . , , , -  (7~b)r.v., = - M f l T l  (49) 

In terms of the angle of rotation th, where dt h = l d~b, this becomes 

OE 

t i n  Gec 's  paper, fl is the linear expansion coefficient. 
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Comparison with equation (43) shows the right-hand sides of these 
two equations to be identical. Thus the difference between the internal 
energy changes at constant volume and at constant pressure is directly 
associated with the change of volume in the latter case. 

It is interesting to note that the effect of the volume change on the 
internal energy is significant, even though this volume change is propor- 
tional to the square (not the first power) of the torsion, and even though 
the direct effect of the change of volume on the torsional couple is 
negligible. 

T H E R M O - E L A S T I C  I N V E R S I O N  
For simple extension we have 6, for an extension ratio ot 

[O In (f/T)/OT]p., = - d in Yddr-/31(a 3- 1) (51) 

which can be transformed to 

(~--~JT).., = - ~ [ 1 - T  dln____ff_~ - o?fl_T1] (51a) 
dT 

The inversion point is given by the value of o- at which (Of/OT)~,,z=O, 
i.e. by the equation 

/3T/(a ~- 1) = 1 - T d In ~/dT (52) 

For natural rubber, the experiments of Allen, Bianchi and Price 9 give 

d In ~ / d r ~ 0 . 2  ( l /T)  (53) 

so that equation (52) has a solution at a positive value of ot 3-  1. 
The comparable relation for torsion [equation (36a)] is 

(~T)p,z,, M[ l+/3T-Tdlnp°] 
= T  dr J 

(54) 

Since this does not contain ~, the stress/temperature coefficient has the 
same sign for all values of the torsion, i.e. there can be no thermoelastic 
inversion. 

D I A G R A M M A T I C  R E P R E S E N T A T I O N  

Typical examples of the dependence of the couple on temperature, under 
constant pressure conditions, are shown diagrammatically in Figure 1, 
(the range of temperature being sufficiently small for linearity to be 
assumed). For natural rubber, /3= 6.6 × 10-~; hence at T= 300*K, 
/3T=0"20. If d l n ~ / d T = 0 ,  the resultant slope is represented by the 

line AC. If, however, we insert Tdln~/dT=0.2 from the experimental 
result (53) for natural rubber, then M is approximately proportional to T 
(line AB). 
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Figure / - - R e l a t i o n  between couple and tem- 
perature at constant pressure [equation (36a)] 

AC [3T= 0"20, Td!n ~0/dT=0 

AB fiT=0.20,  T d In ~ / d T = 0 . 2 0  

The form of the curves in Figure 1 is independent of the amount of the 
torsion ~b. This affects only the vertical scale factor. 

D I S C U S S I O N  

The equations for the stress/temperature coefficient at constant volume 
(37, 37a) are formally identical to those for simple extens.ion, with the 
substitution of M and ~b for f and I. The differences between the stress/ 
temperature coefficients at constant pressure and at constant volume, how- 
ever, are not of the same form, the term 13 in equation (38) being replaced 
b y - 1 3 / ( o r 3 - 1 )  in the corresponding equation for simple extension (or 
being the extension ratio). The effect of this is most significant at 
small strains, since when ~--> 1 the quantity -13/(a 3-1) tends to infinity. 
Correspondingly, the quantity (OE/Ol)~,r for simple extension remains 
finite as f---> 0, while for torsion Mep or (OE/O~b)~,r,z is proportional to M 
[equation (42)] and hence vanishes when M = 0 .  These differences reflect 
the different form of dependence of the volume change on the strain in 
the two cases; for a tensile strain the volume change is approximately 
proportional to the strain, while for torsion it is proportional to the square 
of the strain. As a result, the effects of the volume change are much less 
apparent in the case of small torsional strains than in the case of small 
tensile strains. 

It has been shown that a direct relation exists between the differences 
of internal energy changes as derived from the temperature coefficients of 
M at constant pressure and at constant volume, and the change of volume 
due to the torsion, at constant pressure. At first sight this result seems 
surprising, since the calculated values of the couple were obtained by 
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ignoring the effect of the volume change. The explanation of this apparent 
inconsistency is that while both (OV/O~)r,~,~ and (dE/dV)r contain the 
compressibility K, the product of these two quantities, which represents 
the contribution of the volume change to the internal energy change asso- 
ciated with the torsion, does not. (The same applies to (OE/OOr,,- 
(OE/Ol)r,v in simple extension, as can be seen from equations (12) and (14) 
of Gee's paper 8, in which it was assumed that (OE/Ol)r,v was zero.) Hence 
the change of internal energy which arises from compressibility effects is 
independent of the numerical value of the compressibility (provided that 
this i~ small compared with 1/G'). Looking at the problem in this way 
we can see that the results would be unchanged if, in place of the actual 
value of compressibility, we were to substitute an indefinitely small, but 
non-zero value. The quantity 8M, representing the difference in the 
couple arising from the change of volume, could then be made indefinitely 
small. Thus in the limit, as K > 0, M > M0, and the equations for the 
couple, and its temperature coefficients, instead of being approximations, 
become exact. The treatment given is therefore an exact treatment for 
the case when the comt~ressibility is indefinitely small; it remains a very 
close approximation in the case when KG'~IO -~. 

It is desirable to* reiterate the restrictions implied by the use of the 
Gaussian network model in the interpretation of stress/temperature rela- 
tions. As stated in the preceding paper ~, this model divides the free 
energy of deformation into two entirely separate terms, one associated 
with the change of volume, which is independent of strain, and the other 
related to the deformation of the network. On this basis, any changes 
of internal energy measured under constant volume conditions must be 
interpreted as arising from the dependence of internal energy on the mean 
square chain vector length. It should, however, be borne in mind that 
while such a dependence of internal energy on chain dimensions must 
give rise to a term of the type postulated, this is not necessarily the only 
factor which could possibly be involved. It is not necessarily true that the 
internal energy associated with the inter-molecular force fields is a function 
of volume only; it is possible--and at high degrees of orientation probable 
- - that  the state of local orientation may also be a factor in the situation, 
giving a contribution to the intermolecular internal energy even at constant 
volume. Hence equations of the type (37) or (40) do not represent thermo- 
dynamic necessities; they are valid only in so far as the physical model 
on which they are based is valid. 

A P P E N D I X  

Pure homogeneous strain plus simple shear 
Helmholtz Jree energy--Consider a unit cube with edges OA, OB, OC, 

parallel to coordinate axes OX, OY, OZ. This is subjected to a pure 
homogeneous strain whereby the edge lengths become ill, fl~ and fl~ 
respectively. Thus the face normal to OY changes from the square OBDA 
(Figure 2) to the rectangle OB'D'A', where OA" = fll and OB" =fl~. Appli- 
cation of an additional shear strain parallel to OX converts this to the 
parallelogram OB"D"A', the y dimension (fl~) remaining unchanged. The 
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B, L e" 

0 A 
Figure 2 

D' D" 

Y 
A r X 

shear strain, referred to the dimensions in the state of pure homogeneous 
strain, is 

T=B'B"/OB" (55) 

It is required to determine h~+ 2 2 h 2 + h 3 for the final strained state, where 
hl, ha and h3 are the principal axes of the strain ellipsoid. This can be 
done without actually deriving the principal axes, by making use of the 
result that the sum of the squares of any three mutually perpendicular 
lines of unit length, when subjected to a pure homogeneous strain, is 
independent of the directions of the axes of strain, and equal to the sum 
of the squares of the principal axes of the strain ellipsoid1". In the present 
c a s e  

OA'2 + OC~ + OB"~ =/3~ + ~ + fl~3 (1 + T r ) (56) 

The expression for the free energy is therefore 

A = A * + ½ G "  [ ~ +  ~+ff~(1 +3,2) ] (57) 

Components of stress 
To find the components of stress, we consider a specimen whose surfaces 

in the final state are normal to OX, OY and OZ, forming a rectangular 
parallelepiped of dimensions /31, /3~ and /3a (Figure 3). The components 
of stress are determined by the condition that the change in the free energy 

P N 

i , , /  
t l  3 0 l 

Figure 3 

I t33 (~ Q '  

"N' ]- - =- t13 

I I ~ "/'11 

R R' 

tThe  proof is essentiMly that given in ref. 10 for the three-chain netwOrk model. This relationship is 
equivalent to the properw of an ellipsoid, that the sum of  the squ.ares of any three conjugate diameters 
is equal to the sum of the squares of its principal axes 1~. Any three mutually perpendicular diameters of  
an unstrained sphere become conjusate diameters of the elliPsoid ~n the strained state. 
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in an incremental strain is equal to the work done by the applied forces. 
Normal stress hi--Consider the displacement of the surface Q R  (Figure 3) 

through the distance 8/31 to the parallel position Q'R' ,  at constant/33 and 
/38. This displacement involves a change in the shear strain of amount 
8y in addition to the change in /31. To find 8% consider the line ON 
which was parallel to OZ in the unstrained state; this will move to ON'  as a 
result of the additional strain. Since the strain is uniform 

N N ' / P N = Q Q ' / P Q = S f l l / f l l  
Also, since OP=/38, 

PN = flW, NN" = f138y 
Hence 

8y = (y //31) 8/31 

The change in free energy is therefore [from equation (57) ] 

8A = s A *  + G' [/31+/3~y (y//30 18/3, 
where 

8A* =(dA* /dlO 8V= - p* f12f18 8fll 

The mechanical work 8W is given by 

8W = tnflzfla 8/31 

From equations (61), (62) and (63) 

t11/3~/38: - p*#~/3~ + G' (#1 + ~ / / 3 0  
or, since/31/38/38 = V, 

• t l~=-p*+ (G' /V)  ( ~ + ~ 3 ~ )  

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

Normal stress fir--Since /33 is the principal axis the equations for the 
principal stresses 8 apply. Hence 

t3~= - p *  + (6"/v)  (65) 

Normal stress t,8--Consider a displacement of the surface PQ (Figure 3) 
through a distance 8/38 parallel to OZ. In this case PN remains constant 
but OP increases. Hence 

8 y = 8  ( P N / O P ) =  - (y//38) 8/33 (66) 
Therefore 

8A= -p*SV+G"  [/38 (1+ Tz)+/3ssy ( -y/ /33)  ] 6/38 
o r  

8A = [ - p*f11/38 + G'/3318f18 (67) 
The mcchanical work is 

8 W =  t~/31/32 8/3~ (68) 
Hence 

t~= - p *  + (G'[IO fl~ (69) 
From equations (64) and (65) 

tu-t~= (c'/v) ~ - y , +  y ,~ (70) 
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Tangential stress t~3 
In  an increment of  shear strain ~y at constant  ill, fl~ and/33, the surface 

B " D "  (Figure 2) is displaced horizontally through a distance OB8 T or f138T. 
The area of this surface being fllfl2, the work  done is thus 

gW = t13fll/32./33~y (71) 

Since the volume is unchanged 8A* = 0  and the change in free energy is, 
f rom (57) 

8A =G'fl]Sy (72) 

Equat ing 8A and 8W 

tz3 = G" (fl~ / fllfl~fl3)y = (G" / V) fl~y (73) 

In  the present case the unstrained volume was taken as unity. For  the 
general case of  an  unstrained volume Vu we have V/V,=fllfl2fl3 and 
equation (73) may  be written 

t~3 = (G' /V,,) (fl~/ flxfl2)y (73a) 
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